96 | 0 | 10 |
下载次数 | 被引频次 | 阅读次数 |
为解决传统油气管道缺陷修复耗时长、热输入过大、修复质量不易控制等问题,以X70管道为研究对象,采用冷金属过渡电弧增材制造工艺对缺陷管道进行修复。结果表明,单层单道试验后试件抗拉强度分别为596、581 MPa,高于母材最低抗拉强度570 MPa,焊缝与母材结合良好;搭接率为33%时,多道成形表面质量较高;层间抬升距离分别为2.41、2.04 mm时的多层成形质量较好;修复后试样未出现气孔、裂纹等缺陷;微观金相显示修复区主要由铁素体和少量贝氏体组成,保证了修复后的力学强度;拉伸试件断裂位置均位于母材,两方案试件的平均抗拉强度分别为629、621 MPa,修复后的性能符合标准要求,可对电弧增材修复油气管道缺陷提供一定参考。
Abstract:To address the problems of traditional oil and gas pipeline defect repair technology,such as long processing time,excessive heat input,poor repair quality control and other issues,this paper takes X70 pipeline as the research object,using cold metal transfer wire arc additive manufacturing process to study the pipeline defect repair technology. The results show that the tensile strength of the specimens is 596 MPa and 581 MPa for single-layer and single-pass experiments,which is higher than the minimum tensile strength of the base material of 570 MPa,the weld seam and the base material combined well. When the overlap rate is 33%,the surface quality of multi-pass forming is higher. The multi-layer forming quality is better when the lift distance between layers is 2.41 mm and 2.04 mm respectively. No pores,cracks or other defects are observed in the repaired specimens. Microscopic metallography showed that the repair area was mainly composed of ferrite and a small amount of bainite,which ensures the mechanical strength after repaired. The fracture position of tensile specimens is located in the base material,the average tensile strength of the specimens in the two schemes is 629 MPa and621 MPa respectively,and the repaired properties meet the standard requirements. This study provides a practical reference for wire arc additive manufacturing-based repair of oil and gas pipeline defects.
[1]齐婉彤.油气储运理论与技术进展[J].化工管理,2018(12):70-72.
[2]姜昌亮.高钢级管道可靠性影响因素探讨与思考[J].油气储运,2022,41(7):755-764.
[3]李秋扬,赵明华,任学军,等.中国油气管道建设现状及发展趋势[J].油气田地面工程,2019,38(增刊1):14-17.
[4] SABOORI A,AVERSA A,MARCHESE G,et al.Application of directed energy deposition-based additive manufacturing in repair[J]. Applied Sciences,2019,9(16):3316.
[5]韩智,陈瑞,王宇,等.电弧熔丝增材制造技术研究进展[J].特种铸造及有色合金,2021,41(11):1381-1386.
[6] TIAN Y B,SHEN J Q,HU S S,et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V and AlSi5 dissimilar alloys using cold metal transfer welding[J]. Journal of Manufacturing Processes,2019,46(14):337-344.
[7] MARTINA F,MEHNEN J,WILLIAMS S W,et al.Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti-6Al-4V[J]. Journal of Materials Processing Technology,2012,212(6):1377-1386.
[8] BENOIT A,PAILLARD P,BAUDIN T,et al. Comparison of four arc welding processes used for Aluminium alloy cladding[J]. Science and Technology of Welding and Joining,2015,20(1):75-81.
[9]赵红波,毕宗岳,牛辉,等.焊接热输入对厚壁X80管线钢粗晶热影响区组织及性能的影响[J].焊管,2017,40(9):6-10.
[10]张永弟,常维纯,郭旭,等.油气管道环焊缝新型修复技术研究[J].河北工业科技,2022,39(4):268-273.
[11] NING J,YU Z S,SUN K,et al. Comparison of microstructures and properties of X80 pipeline steel additively manufactured based on laser welding with filler wire and cold metal transfer[J]. Journal of Materials Research and Technology,2021,10:752-768.
[12] GE J G,LIN J,CHEN Y,et al. Characterization of wire arc additive manufacturing 2Cr13 part:process stability,microstructural evolution,and tensile properties[J].Journal of Alloys and Compounds,2018,748(21):911-921.
[13] ZHOU S Y,HAN X,NI J Q,et al. Metal transfer behavior during CMT-based wire arc additive manufacturing of Ti-6Al-4V alloy[J]. Journal of Manufacturing Processes,2022,82(1):159-173.
[14]张洪涛,冯吉才,胡乐亮. CMT能量输入特点与熔滴过渡行为[J].材料科学与工艺,2012,20(2):128-132.
[15]邓华裕.汽轮机低压末级叶片现场焊接修复工艺技术研究[J].云南化工,2023,50(3):124-126.
[16]谢昊. X70钢高压干法GMAW直流正接焊接工艺研究[D].哈尔滨:哈尔滨工业大学,2018.
[17]全国钢标准化技术委员会.金属材料拉伸试验第1部分:室温试验方法:GB/T 228.1—2021[S].北京:中国标准出版社,2022.
[18]谷云龙,丁雅萍,袁代英,等.焊接顺序对管道在役焊接温度和应力场的影响[J].压力容器,2018,35(3):44-50.
[19] GUNGOR B,KALUC E,TABAN E,et al. Mechanical and microstructural properties of robotic cold metal transfer(CMT)welded 5083-H111 and 6082-T651 Aluminum alloys[J]. Materials and Design(1980-2015),2014,54(11):207-211.
[20] WANG Y,WANG L J,DI X J,et al. Simulation and analysis of temperature field for in-service multi-pass welding of a sleeve fillet weld[J]. Computational Materials Science,2013,68(2):198-205.
[21]熊俊,薛永刚,陈辉,等.电弧增材制造成形控制技术的研究现状与展望[J].电焊机,2015,45(9):45-50.
[22]陈森昌,张平,张李超,等.机器人电弧增材系统修复破损零件研究[J].华中科技大学学报(自然科学版),2023,51(4):91-95,111.
[23]全国石油天然气标准化技术委员会.钢质管道焊接及验收:GB/T 31032—2014[S].北京:中国标准出版社,2015.
基本信息:
DOI:
中图分类号:TE973.3
引用信息:
[1]张永弟,陈佳兴,戴璐钰,等.CMT电弧增材制造修复X70管道缺陷技术研究[J].电加工与模具,2025,No.390(04):57-64.
基金信息:
河北省重点研发计划项目(21311802D); 河北省科技重大专项(22281803Z)