nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 04, No.390 28-33
整体叶盘叶栅通道径向进给电解加工复杂流场设计与试验研究
基金项目(Foundation): 国家自然科学基金项目(52375443); 江苏省自然科学基金项目(BK20230886)
邮箱(Email):
DOI:
摘要:

针对整体叶盘叶栅通道电解加工,提出了一种新型带有增液槽的电解液流动模式,开展了传统流场与带增液槽流场的仿真试验对比。仿真结果表明,带增液槽的流场在加工端面有更高、更稳定的电解液流速。试验结果表明,传统流场加工轮毂面缺液处的表面粗糙度为Ra0.6~0.9μm,而采用增液槽流场加工则为Ra0.3μm左右,且加工过程电流平稳,无短路现象,叶栅通道余量差优于传统流场,表明设计增液槽流场可以提高整体叶盘叶栅通道的加工质量。

Abstract:

Aimed at the electrochemical machining of the blisk's cascade channel,a new type of liquid-increasing groove flow field pattern was proposed,and simulation and experiment comparisons between the traditional flow field and the liquid-increasing groove flow field was conducted. The simulation result showed that the flow field with the liquid-increasing groove had a more stable and higher flow velocity at the machining surface. The experiment result indicated that the roughness of the hub surface with liquid deficiency in traditional flow field machining was Ra0.6 ~0.9 μm,while the roughness processed with the liquid-increasing groove was about Ra0.3 μm at the same position.Moreover,the current was stable during processing with the liquid-increasing groove at the same feed rate without short circuits,and the residual thickness deviation of the cascade channel was better than traditional flow field,indicating that the new type of liquid-increasing groove flow field can improve the machining quality of the blisk's cascade channel and further improve the machining efficiency.

参考文献

[1]曹凤国.电化学加工技术[M].北京:北京科学技术出版社,2007.

[2]范植坚,李新忠,王天诚,等.电解加工与复合电解加工[M].北京:国防工业出版社,2008.

[3]张明岐,张志金,黄明涛.航空发动机压气机整体叶盘电解加工技术[J].航空制造技术,2016,59(21):86-92.

[4]刘嘉,徐正扬,万龙凯,等.整体叶盘叶型电解加工流场设计及实验[J].航空学报,2014,35(1):259-267.

[5]张矿磊,曲宁松,朱栋,等.整体叶盘叶栅通道电解加工流场仿真研究[J].机械制造与自动化,2016,45(6):98-101.

[6]孙伦业,徐正扬,朱荻.叶盘通道径向电解加工的流场设计及试验[J].华南理工大学学报(自然科学版),2013,41(3):95-100.

[7]侯镇浩,王京涛,朱栋,等.整体叶盘电解加工电解液进液角度优化研究[J].航空制造技术,2023,66(7):96-100,117.

[8]左航,朱栋,李素乐.闭式叶环开槽电解加工流场仿真与阴极结构优化[J].航空制造技术,2024,67(12):87-92,109.

[9]武旸,杨峰,赵刚刚,等.薄壁筒内异形槽电解加工流场优化及工艺试验[J].电加工与模具,2024(增刊1):45-50.

[10] SAWICKI J,PACZKOWSKI T. Effect of the hydrodynamic conditions of electrolyte flow on critical states in electrochemical machining[J]. EPJ Web of Conferences,2015,92:02078.

[11] KLOCKE F,ZEIS M,KLINK A. Interdisciplinary modelling of the electrochemical machining process for engine blades[J]. CIRP Annals-Manufacturing Technology,2015,64(1):217-220.

[12] XU Z Y,WANG Y D. Electrochemical machining of complex components of aero-engines:developments,trends,and technologicaladvances[J]. Chinese Journal of Aeronautics,2021,34(2):28-53.

[13]徐庆,朱荻,徐正扬.整体叶盘通道电解加工流场的均匀性[J].华南理工大学学报(自然科学版),2011,39(6):7-12.

基本信息:

DOI:

中图分类号:V263;TG662

引用信息:

[1]沈汶贤,徐正扬,王玉弟.整体叶盘叶栅通道径向进给电解加工复杂流场设计与试验研究[J].电加工与模具,2025,No.390(04):28-33.

基金信息:

国家自然科学基金项目(52375443); 江苏省自然科学基金项目(BK20230886)

检 索 高级检索