360 | 0 | 19 |
下载次数 | 被引频次 | 阅读次数 |
虽然电火花加工技术在现代制造业得到了广泛应用,但目前电火花加工的微观过程仍未完全明确,限制了其进一步应用与发展。近年来,高速摄像技术和数值模拟技术的发展,极大地推动了电火花加工机理相关的研究进展。首先,概述了单次放电过程中的放电通道特性及材料蚀除机理的相关研究成果,重点介绍了放电通道的静态与动态特性以及熔融材料蚀除驱动力的相关研究;接着,简述了连续放电过程情况下的极间环境观测及表面形成过程仿真的研究现状;最后,展望了后续研究方向。
Abstract:Although electrical discharge machining(EDM) has been widely used in modern manufacturing industry,the mechanism of EDM is still not clear yet,which hinders its further application and development. Nevertheless,the development of high-speed photography and numerical simulation in recent years has greatly promoted the understanding of EDM process. In this review,the researches on discharge channel characteristics and material removal mechanism during a single discharge are firstly summarized. The static and dynamic properties of discharge channels and the driving force of molten material removal are emphatically introduced. Secondly,the progress on the observation of gap environment during continuous discharge and the simulation of surface formation are described. Based on the above review,the future direction of EDM mechanism research is prospected.
[1] KUNIEDA M,LAUWERS B,RAJURKAR K,et al.Advancing EDM through fundamental insight into the process[J]. CIRP Annals-Manufacturing Technology,2005,54(2):64-87.
[2] MUKUND R,MARIA A,PHILIP T,et al. Theoretical models of the electrical discharge machining process. II.the anode erosion model[J]. Journal of Applied Physics,1989,66(9):4104-4111.
[3] NATSU W,SHIMOYAMADA M,KUNIEDA M. Study on expansion process of EDM arc plasma[J]. JSME International Journal,Series C:Mechanical Systems,Machine Elements and Manufacturing,2006,49(2):600-605.
[4] KOJIMA A,NATSU W,KUNIEDA M. Spectroscopic measurement of arc plasma diameter in EDM[J]. CIRP Annals,2008,57(1):203-207.
[5] KITAMURA T,KUNIEDA M. Clarification of EDM gap phenomena using transparent electrodes[J]. CIRP Annals,2014,63(1):213-216.
[6] KUNIEDA M,XIA H,NISHIWAKI N,et al. Observation of arc column movement during monopulse discharge in EDM[J]. CIRP Annals,1992,41:227-230.
[7] LI Q,YANG X D. Study on arc plasma movement and its effect on crater morphology during single-pulse discharge in EDM[J]. The International Journal of Advanced Manufacturing Technology,2020,106:5033-5047.
[8] YUE X,YANG X D. The role of discharge plasma on molten pool dynamics in EDM[J]. Journal of Materials Processing Technology,2021,293:117092.
[9] ZHU Y,GU L,FARHADI A,et al. Observation and analyzation of plasma channel evolution behavior in air flushing electrical arc machining[J]. The International Journal of Advanced Manufacturing Technology,2018,100:3127-3138.
[10] WANG J,GAO Q,LU J,et al. Fast ED-milling of high volume fraction Al/SiCpmetal matrix composites[J].CIRP Annals,2024,73(1):121-124.
[11] KOJIMA A,KUNIEDA M. Study on thermal equilibrium in EDM arc plasma by spectroscopic analysis[J].International Journal of Electrical Machining,2007,12:23-27.
[12] NATSU W,OJIMA S,KOBAYASHI T,et al. Temperature distribution measurement in EDM arc plasma using spectroscopy[J]. JSME International Journal,Series C:Mechanical Systems,Machine Elements and Manufacturing,2004,47(1):384-390.
[13] DESCOEUDRES A,HOLLENSTEIN C,W?LDER G,et al. Time-resolved imaging and spatially-resolved spectroscopy of electrical discharge machining plasma[J].Journal of Physics D:Applied Physics,2005,38(22):4066-4073.
[14] MARADIA U,HOLLENSTEIN C,WEGENER K.Temporal characteristics of the pulsed electric discharges in small gaps filled with hydrocarbon oil[J]. Journal of Physics D:Applied Physics,2015,48:055202.
[15] WIESSNER M,HOLLENSTEIN C,WEGENER K.Investigation on EDM plasmas using time and spatiallyresolved optical emission spectroscopy[J]. Procedia CIRP,2020,95:183-188.
[16] WIESSNER M,MACEDO F,MARTENDAL C,et al.Fundamental investigation of EDM plasmas,part I:a comparison between electric discharges in gaseous and liquid dielectric media[J]. Procedia CIRP,2018,68:330-335.
[17] PHILIP T,MUKUND R,MARIA A,et al. Theoretical models of the electrical discharge machining process. III.the variable mass,cylindrical plasma model[J]. Journal of Applied Physics,1993,73:7900-7909.
[18] SOHAM S,DAVIDE C,SHIV G,et al. A model of micro electro-discharge machining plasma discharge in deionized water[J]. Journal of Manufacturing Science and Engineering,2014,136(3):031011.
[19] BAYKI S,MUJUMDAR S. A 1D model for prediction of dry electrical discharge machining(dry-EDM)plasma characteristics[J]. Journal of Manufacturing Processes,2023,102:417-428.
[20] HAYAKAWA S,KUNIEDA M. Numerical analysis of arc plasma temperature in EDM process based on magnetohydrodynamics[J]. Transactions of the Japan Society of Mechanical Engineers:Series B,1996,62(600):3171-3177.
[21] LI X,WEI D,LI Q,et al. Study on effects of electrode material and dielectric medium on arc plasma in electrical discharge machining[J]. The International Journal of Advanced Manufacturing Technology,2020,107:4403-4413.
[22] TANG J,LI Z,YUE X. Numerical analysis of plasma channel characteristics and dynamic effects on molten pool in electrical discharge machining[J]. Precision Engineering,2024,86:305-316.
[23] LIU C,YANG X D. Transient simulation of arc plasma in electrical discharge machining[C]//Proceedings of ICPE2024:the 20th International Conference on Precision Engineering,October 23-27,2024,Sendai.
[24] LIU C,LI Q,YANG X D. Analysis of arc plasma characteristics and energy distribution in EDM based on two-temperature model[J]. Precision Engineering,2023,83:204-215.
[25]崔景芝.微细电火花加工的基本规律及其仿真研究[D].哈尔滨:哈尔滨工业大学,2007.
[26] QIN L,HOU W,HU J,et al. A parallel PIC-MCC simulation of microsecond discharge modeling in EDM[J]. The International Journal of Advanced Manufacturing Technology,2022,119:5467-5481.
[27] QIN L,HOU W,LI Z,et al. Study on energy distribution of discharge plasma and its effect on crater formation in EDM[J]. The International Journal of Advanced Manufacturing Technology,2022,121:5563-5585.
[28] ZOLOTYKH B. The mechanism of electrode erosion in electrical discharges[J]. Soviet Physics,Technical Physics,1959,4(12):1370-1373.
[29] VAN D. Physico-mathematical analysis of the electro discharge machining process[D]. Leuven:Thesis Katholieke Universiteit te Leuven,1973.
[30] HOCKENBERRY T,WILLIAMS E. Dynamic evolution of events accompanying the low-voltage discharges employed in EDM[J]. IEEE Transactions on Industry and General Applications,1967,IGA-3:302-309.
[31] FUJIMOTO R,TOSHIMA S. Electrode erosion by pulsed discharges in liquid[J]. Electrical Engineering in Japan,1972,92:29-35.
[32] TAKEZAWA H,YANAGIDA D,MOHRI N. Relation between bubble behavior and removal volume during single discharge with a thin electrode and a flat-plate workpiece[J]. International Journal of Electrical Machining,2014,19:16-21.
[33] HAYAKAWA S,SASAKI Y,ITOIGAWA F,et al.Relationship between occurrence of material removal and bubble expansion in electrical discharge machining[J].Procedia CIRP,2013,6:174-179.
[34] YOSHIDA M,KUNIEDA M. Study on the distribution of scattered debris generated by a single pulse discharge in EDM process[J]. Journal of The Japan Society of Electrical Machining Engineers,1996,30(64):27-36.
[35] TAKAYUKI T,TSUJITA Y,GOTOH H,et al. Observation of material removal process by single discharge in air gap[J]. Procedia CIRP,2018,68:276-279.
[36] HAYAKAWA S,MINOURA K,ITOIGAWA K,et al.Study on material removal mechanism in EDM process through observation of resolidification of molten metal[J].Procedia CIRP,2018,68:266-271.
[37] YUE X,YANG X,KUNIEDA M. Influence of metal vapor jets from tool electrode on material removal of workpiece in EDM[J]. Precision Engineering,2018,53:278-288.
[38] LI Q,YANG X. Influence of tool electrode material on material removal and surface integrity in electrical discharge machining[J]. Procedia CIRP,2020,95:383-388.
[39]岳晓明.电火花加工材料蚀除机理及表面变质层形成研究[D].哈尔滨:哈尔滨工业大学,2018.
[40] LI Q,YANG X D,KUNIEDA M. Observation of melt pool dynamics and material removal with different dielectrics in electrical discharge machining[C]//The 10th International Conference on Leading Edge Manufacturing in 21st Century(LEM21),Kitakyushu,c2021:1-6.
[41] LI Q,YANG X D,KUNIEDA M. Observation of EDM gap phenomena of single pulse discharge under different environments[J]. Procedia CIRP,2022,113:87-92.
[42] LI Q,YANG X D. Thermo-hydraulic analysis of melt pool dynamics and material removal on anode in electrical discharge machining[J]. International Journal of Heat and Mass Transfer,2023,203:123816.
[43] WANG J,XI X,MA J,et al. Study on material removal mechanism and control strategy of multi-axis fast EDmilling[J]. Journal of Manufacturing Processes,2023,101:354-370.
[44] KITAMURA KUNIEDA M. Direct observation of EDM gap phenomena using transparent electrodes[J]. Journal of the Japan Society for Precision Engineering,2015,81(11):983-986.
[45]李其.电火花加工材料瞬态蚀除过程及表面形成机理研究[D].哈尔滨:哈尔滨工业大学,2024.
[46] YANG X D,GUO J,CHEN X,et al. Molecular dynamics simulation of the material removal mechanism in microEDM[J]. Precision Engineering,2011,35:51-57.
[47] YUE X,YANG X D. Study on the distribution of removal material of EDM in deionized water and gas with molecular dynamics simulation[C]//18th CIRP Conference on Electro Physical and Chemical Machining(ISEM XVIII):Tokyo,Japan,April 18-22,2015,Procedia CIRP,c2016:691-696.
[48] MING W,ZHANG S,ZHANG G,et al. Progress in modeling of electrical discharge machining process[J].International Journal of Heat and Mass Transfer,2022,187:122563.
[49] TAO J,NI J,SHIH A. Modeling of the anode crater formation in electrical discharge machining[J]. Journal of Manufacturing Science and Engineering,2012,134(1):011002.
[50] SOHAM S,DAVIDE C,SHIV G,et al. Modeling of meltpool formation and material removal in microelectrodischarge machining[J]. Journal of Manufacturing Science and Engineering,2015,137(3):031007.
[51] BAI S,KAMLAKAR P. Modelling and simulation of the crater formation process in micro-EDM[C]//Proceedings of the 4M/ICOMM 2015 conference:31st March-2nd April 2015,Milan:Italy,Research Publishing Services,c2015:63-66.
[52] MAHAVIR S,SHASHANK S,JANAKARAJAN R.Numerical simulation and experimental validation on the mechanism of crater evolution in electrical discharge micromachining[J]. CIRP Journal of Manufacturing Science and Technology,2024,51:126-144.
[53] TANG J,YANG X D. A novel thermo-hydraulic coupling model to investigate the crater formation in electrical discharge machining[J]. Journal of Physics D:Applied Physics,2017,50:365301.
[54] KLOCKE F,MOHAMMADNEJAD M,HOLSTEN M,et al.A comparative study of polarity-related effects in single discharge EDM of titanium and iron alloys[J]. Procedia CIRP,2018,68:52-57.
[55] KITAMURA T,KUNIEDA M,ABE K. Observation of relationship between bubbles and discharge locations in EDM using transparent electrodes[J]. Precision Engineering,2015,40:26-32.
[56] KUNIEDA M,KITAMURA T. Observation of difference of EDM gap phenomena in water and oil using transparent electrode[J]. Procedia CIRP,2018,68:342-346.
[57] HAYAKAWA S,YAMADA S,ITOIGAWA F,et al. Effect of bubble coalescence on material removal rate in electrical discharge machining process[J]. International Journal of Electrical Machining,2011,16:33-39.
[58] MARADIA U,WEGENER K,STIRNIMANN J,et al.Investigation of the scaling effects in meso-micro EDM[C]//Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition(IMECE2013),November 15-21,2013,San Diego,California,USA.
[59] LI G,NATSU W,YU Z. Elucidation of the mechanism of the deteriorating interelectrode environment in micro EDM drilling[J]. International Journal of Machine Tools and Manufacture,2021,167:103747.
[60] KUNIEDA M,TAKEUCHI H,KUSAKABE Y,et al.Clarifying EDM gap phenomena by gas chromatography analysis of bubbles[J]. International Journal of Electrical Machining,2011,16:15-19.
[61] JITHIN S,JOSHI S. Surface topography generation and simulation in electrical discharge texturing a review[J].Journal of Materials Processing Technology,2021,298:117297.
[62] TAN P,YEO S. Modelling of overlapping craters in micro-electrical discharge machining[J]. Journal of Physics D:Applied Physics,2008,41:205302.
[63] AMIN R,CARLO M,DIDIER T,et al. Modeling of material removal rate and surface roughness generated during electro-discharge machining[J]. Machines,2019,7(2):47.
[64] YIN M,TANG J,LI Z,et al. Thermo-hydraulicmetallographic modeling and study of the thermotropic metamorphic layer in EDM of Ti-6Al-4V[J]. Journal of Physics D:Applied Physics,2025,58:025305.
[65] IZQUIERDO B,SáNCHEZ J,PLAZA S,et al. A numerical model of the EDM process considering the effect of multiple discharges[J]. International Journal of Machine Tools and Manufacture,2009,49:220-229.
[66] IZQUIERDO B,PLAZA S,SáNCHEZ J,et al. Numerical prediction of heat affected layer in the EDM of aeronautical alloys[J]. Applied Surface Science,2012,259:780-790.
[67] LIU J,GUO Y. Residual stress modeling in electric discharge machining(EDM)by incorporating massive random discharges[J]. Procedia CIRP,2016,45:299-302.
[68] JITHIN S,RAUT A,BHANDARKAR U,et al. Finite element model for topography prediction of electrical discharge textured surfaces considering multi-discharge phenomenon[J]. International Journal of Mechanical Sciences,2020,177:105604.
[69] LI Q,YANG X D. Modelling and simulation of surface formation in electrical discharge machining based on thermo-hydraulic coupling[J]. Precision Engineering,2024,85:126-135.
基本信息:
DOI:
中图分类号:TG661
引用信息:
[1]杨晓冬,李其.电火花加工过程的观测与仿真研究进展[J].电加工与模具,2025,No.386(01):1-14.
基金信息:
国家自然科学基金项目(52375419、51875133)