nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 04, No.390 1-12
超声珩磨光整加工技术研究综述
基金项目(Foundation): 国家自然科学基金项目(51275490)
邮箱(Email):
DOI:
摘要:

超声珩磨具有加工效率高、表面质量优、适用材料广等优点,广泛应用于高精度、低损伤复杂孔类结构零部件的精密加工。在国防装备制造领域,发动机关键零部件对表面完整性与服役性能的要求严格,超声珩磨技术逐步发展为超声珩磨光整加工技术。针对薄壁缸套、阀体、齿轮等零部件精加工存在的问题,首先概述了超声珩磨光整加工技术的原理与发展历程;接着,详细分析了超声珩磨磨粒冲击作用、空化作用、声流作用协同下的多角度材料加工去除机理;然后,总结了该技术的实验工艺参数组合优化研究、工件的表面质量评价指标与超声珩磨光整加工表面网纹织构一体化优势;最后,针对超声珩磨光整加工技术领域的未来研究方向作出思考与展望。

Abstract:

Ultrasonic honing offers significant advantages,including high machining efficiency,superior surface quality,and broad material applicability,making it widely used in precision machining of high-accuracy,low-damage complex bore structures. Particularly in military equipment manufacturing,where stringent requirements are imposed on the surface integrity and service performance of critical engine components,conventional ultrasonic honing has evolved into ultrasonic honing finishing technology. To address precision machining challenges in thin-walled cylinder liners,valve bodies,gears,and other critical components,this paper outlines the fundamental principles and developmental trajectory of ultrasonic honing finishing technology. A detailed analysis is provided on the multi-faceted material removal mechanisms under the synergistic effects of abrasive particle impact,cavitation,and acoustic streaming. Furthermore,the study summarizes key research advancements,including optimization of process parameters,evaluation metrics for workpiece surface quality,and the integrated benefits of surface cross-hatch texture formation in ultrasonic honing finishing. Finally,the paper discusses future research directions and provides prospective insights to advance this technology.

参考文献

[1] IRENE B,LOURDES R,LLU魱S M. Optimization and sensitivity analysis of the cutting conditions in rough,semi-finish and finish honing[J]. Materials,2021,15(1):75-75.

[2] MA S,LIU Y,WANG Z,et al. The effect of honing angle and roughness height on the tribological performance of CuNiCr iron liner[J]. Metals,2019,9(5):487-487.

[3]祝锡晶.超声光整加工及表面成型技术[M].北京:中国科学文化出版社,2005.

[4] MALLIPEDDI D,NORELL M,SOSA M,et al. The effect of manufacturing method and running-in load on the surface integrity of efficiency tested ground,honed and superfinished gears[J]. Tribology International,2019,131:277-287.

[5] TIAN X,SUN Y,MU W,et al. High-speed and low-noise gear finishing by gear grinding and honing:a review[J].Chinese Journal of Mechanical Engineering,2024,37(1):127-127.

[6] BARMOUZ M,AZREHOUSHANG B. Development of a customized novel additively manufactured honing tool:surface integrity and abbott-firestone assessment of the honed part[J]. Precision Engineering,2025,93:253-258.

[7] SINGH H,JAIN K P. Study on ultrasonic-assisted electrochemical honing of bevel gears[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2018,232(4):705-712.

[8]隈部淳一郎.精密加工:振动切削基础与应用[M].北京:机械工业出版社,1985.

[9] BIERMANN D,MARSCHALKOWSKI K,PAFFRATH K.Development of a honing process for the combination machining of hardened axisymmetric parts.[J]. Production Engineering,2010,4(2-3):147-155.

[10]祝锡晶,王爱玲,张学松.缸套加工新工艺:功率超声珩磨[J].磨床与磨削,2000(4):75-76.

[11]祝锡晶,王爱玲,辛志杰,等.功率超声珩磨加工[J].机械工艺师,2001(7):35-36.

[12]祝锡晶,叙鸿均,王爱玲,等.功率超声珩磨铸铁缸体的试验研究[J].机械制造,2003(5):34-35.

[13]范红梅,芮延年.薄壁内燃机缸套内壁表面超声珩磨加工理论与实验[J].苏州大学学报(工科版),2008(4):26-30.

[14]温贻芳,芮延年,周红英.铝质细长缸套内孔表面高效超声珩磨加工[J].苏州大学学报(工科版),2008,28(6):6-9.

[15]吕明,佘银柱,秦慧斌,等.超声珩齿振动系统的设计方法及其动力学特性[J].振动与冲击,2013,32(2):147-152.

[16]李庆芬,吕明,王时英.超声珩齿振动系统动力学特性分析与仿真[J].噪声与振动控制,2011,31(4):33-36.

[17]罗树丽,刘新英,胡灿,等.和田玉超声波深孔珩磨运动特性分析[J].塔里木大学学报,2014,26(2):115-120.

[18]刘新英,王志强,廖结安.和田玉超声波深孔珩磨系统设计与仿真[J].机械工程师,2013(12):101-103.

[19] CARVALHO L P,VALD魪S R A,RAFAEL C S,et al.Assessment of the effect of cutting parameters on roughness in flexible honed cylinders[J]. The International Journal of Advanced Manufacturing Technology,2018,95(1-4):181-196.

[20] IRENE B C,JESUSáF,ALEJANDRO D F. Effect of grain size and density of abrasive on surface roughness,material removal rate and acoustic emission signal in rough honing processes[J]. Metals,2019,9(8):860-860.

[21] ZHANG X,ZHAO X P. Free-floating dynamic material removal mechanism of the honing process[J]. The International Journal of Advanced Manufacturing Technology,2023,127(9-10):4473-4489.

[22] IRENE B C,PIOTR S,CARMELO J L P. Multi-objective optimization of tool wear, surface roughness, and material removal rate in finishing honing processes using adaptive neural fuzzy inference systems[J]. Tribology International,2023,182:108354.

[23] IRENE B C,JOAN V C,INAKI S. Residual stresses induced by honing processes on hardened steel cylinders[J]. The International Journal of Advanced Manufacturing Technology,2017,88(5-8):2321-2329.

[24] LAWRENCE D K,RAMAMOORTHY B. Multi-surface topography targeted plateau honing for the processing of cylinder liner surfaces of automotive engines[J]. Applied Surface Science,2016,365:19-30.

[25] YAN G C Y,WANG Z,SU H,et al. Numerical analysis and experimental validation of surface roughness and morphology in honing of Inconel 718 nickel-based superalloy[J]. Advances in Manufacturing,2022,11(1):130-142.

[26]刘振,祝锡晶,王建青,等.轴向功率超声珩磨力学模型的建立及仿真[J].机械科学与技术,2014,33(6):858-863.

[27] ZHANG Y,HU Z,CHEN Y,et al. Insights into scratching force in axial ultrasonic vibration-assisted single grain scratching[J]. Journal of Manufacturing Processes,2024,112:150-160.

[28]吕东喜,王洪祥,唐永健,等.旋转超声加工中磨粒冲击作用的仿真分析[J].哈尔滨工业大学学报,2013,45(3):50-55.

[29]郑华林,张伟,王良.基于热力耦合的超声振动珩磨研究[J].组合机床与自动化加工技术,2015(12):35-38.

[30] GAO Y,WANG F W,LIANG Y,et al. Cutting performance of randomly distributed active abrasive grains in gear honing process[J]. Micromachines,2021,12(9):1119.

[31] ZOU R X,WEN J,TIAN J Y,et al. A new semi-analytical prediction model for temperature field of ultrasonic vibration grinding of single abrasive particles[J]. The International Journal of Advanced Manufacturing Technology,2023,129(1/2):697-714.

[32] ZHAO B,LIU C S,GAO G F,et al. Surface characteristics in the ultrasonic ductile honing of ZrO2ceramics using coarse grits[J]. Journal of Materials Processing Technology,2002,123(1):54-60.

[33] ZHAO B,HUANG Q,CAO Y,et al. Thermal analysis of ultrasonic vibration-assisted grinding with moment-triangle heat sources[J]. International Journal of Heat and Mass Transfer,2023,216:124552.

[34] PENG J H,YAO Y,XU Z P,et al. Material removal characterization during axial ultrasonic vibration grinding SiCp/Al composites with a single diamond grain[J]. The International Journal of Advanced Manufacturing Technology,2024,134(11/12):5267-5280.

[35]田梦.三维螺线超声振动磨削硬脆材料的热力耦合作用机理SPH仿真研究[D].北京:北京理工大学,2015.

[36] ZHAO J,XU X Q,LI W Q,et al. Material removal modes and processing mechanism in microultrasonic machining of ball ceramic tool[J]. Ceramics International,2024,50(16):28844-28856.

[37] OMIDREZA S,MARJAN B N,FATEMEH Y,et al.Dissipation of cavitation-induced shock waves energy through phase transformation in NiTi alloys[J].International Journal of Mechanical Sciences,2018,137:304-314.

[38] YE L Z,ZHU X J,WANG L J,et al. Study on characteristics of single cavitation bubble considering condensation and evaporation of kerosene steam under ultrasonic vibration honing[J]. Ultrasonics-Sonochemistry,2018,40,Part A:988-994.

[39]祝锡晶,叶林征.功率超声珩磨空化试验分析[J].机械工程学报,2017,53(19):136-142.

[40]王建青,祝锡晶,郭策.功率超声珩磨磨削区椭球状空化泡动力学模型及数值模拟[J].机械设计与研究,2015,31(5):109-112.

[41]沈雪红.难加工材料超声珩磨加工的机理及试验研究[D].西安:西安石油大学,2015.

[42]李强,张钧,卢少波,等.耦合超声场的气液流动特性[J].高校化学工程学报,2024,38(1):70-78.

[43]李琛,袁牧,许庆铎,等.超声空化对细微流道中固体颗粒的运动特性研究[J].机械工程学报,2022,58(23):218-226.

[44] WANG Y,FAN L F,SHI J,et al. Effect of cavitation on surface formation mechanism of ultrasonic vibrationassisted EDM[J]. The International Journal of Advanced Manufacturing Technology,2023,124(10):3645-3656.

[45] TIAN L,ZHANG Y X,YIN J Y,et al. Study on the liquid jet and shock wave produced by a near-wall cavitation bubble containing a small amount of non-condensable gas[J]. International Communications in Heat and Mass Transfer,2023,145,Part A:106815.

[46] WANG T H,CHEN L Y. Thermodynamic behavior and energy transformation mechanism of the multi-period evolution of cavitation bubbles collapsing near a rigid wall:a numerical study[J]. Energies,2023,16(3):1048.

[47] KHAVARI M,PRIYADARSHI A,MORTON J,et al.Cavitation-induced shock wave behaviour in different liquids[J]. Ultrasonics Sonochemistry,2023,94:106328.

[48] LUO J,FU G,XU W,et al. Experimental study on attenuation effect of liquid viscosity on shockwaves of cavitation bubbles collapse[J]. Ultrasonics Sonochemistry,2024,111:107063.

[49] YE L Z,Zhu X J. Analysis of the effect of impact of near-wall acoustic bubble collapse micro-jet on Al 1060[J]. Ultrasonics Sonochemistry,2017,36:507-516.

[50]王传玉.超声振动辅助激光熔覆IN718涂层数值模拟和实验研究[D].镇江:江苏大学,2022.

[51] CHEN L M,DU Q,GUO Y Q,et al. Numerical modelling of effects of ultrasound-induced acoustic streaming on hydrodynamics in a confined impinging jet reactor using a non-linear model based on local velocity fluctuation[J].Chemical Engineering and Processing,2023,183:109253.

[52]王文超.超声激励下空化冲击波效应及其流场特性分析[D].太原:中北大学,2023.

[53]祝锡晶,张小强.超声振动外圆珩磨油石条运动及磨粒切削作用分析[J].超硬材料工程,2017,29(4):40-43.

[54] LI G H,HAN J,TIAN X Q,et al. Prediction of honing force based on kinematic-geometric simulation[J].Journal of Manufacturing Processes,2023,101:1136-1146.

[55]韩雷震.旋转超声机床动态特性分析及磨削力与材料去除研究[D].哈尔滨:哈尔滨工业大学,2020.

[56]章涛,侯远,徐静雯,等.旋转超声磨削加工建模与仿真研究[J].工具技术,2023,57(4):70-78.

[57]张艳岗,郭巨寿,张雪冬,等.精密孔珩磨加工仿真分析及工艺参数优选[J].组合机床与自动化加工技术,2017(2):142-145.

[58] SU H,YANG C Y,FU Y C,et al. Analysis of honing material removal rate and surface quality using electroplated oilstone[J]. Materials,2024,17(24):6170.

[59] BABY A K,RAJENDRAKUMAR P K,DEEPAK L K.Influence of honing angle on tribological behaviour of cylinder liner-piston ring pair:experimental investigation[J]. Tribology International,2022,167:107355.

[60] ZHU X S,XU K W,ZHAO B,et al. Experimental and theoretical research on‘local resonance’ in an ultrasonic honing system[J]. Journal of Materials Processing Technology,2002,129(1/3):207-211.

[61] PAWLUS P,CIESLAK T,MATHIA T. The study of cylinder liner plateau honing process[J]. Journal of Materials Processing Technology,2009,209(20):6078-6086.

[62]高绍武,杨长勇,徐九华,等.镍基高温合金珩磨表面粗糙度研究[J].中国机械工程,2017,28(2):223-227.

[63] VRAC D,SIDJANIN L,BALOS S,et al. The influence of tool kinematics on surface texture, productivity,power and torque of normal honing[J]. Industrial Lubrication and Tribology,2014,66(2):215-222.

[64] BARROS C H G,SCHRAMM R C,FRANCO D S,et al.Effect of grain size and number of strokes on Rk parameters and emptiness coefficient in honing process[J]. The International Journal of Advanced Manufacturing Technology,2019,103(9/12):3717-3734.

[65] GUO Z,LI Y,GUO W C,et al. Research on the mechanisms of internal gear honing by use of cone-shape honing wheel with tool tilt angle[J]. The International Journal of Advanced Manufacturing Technology,2022,121(11/12):8187-8196.

[66]乔培平.超声珩磨钢质薄壁缸套的试验设计研究[J].机械制造与自动化,2015,44(4):47-48.

[67] LU Y J,LI J,LIANG R D,et al. Investigation on the effect of honing parameters on cylindricity of engine cylinder liner[J]. The International Journal of Advanced Manufacturing Technology,2020,111(11/12):1-12.

[68] MA K,ZHU X J,CUI X L,et al. Experimental investigation on surface quality in ultrasonic-assisted honing of 304 stainless steel[J]. Precision Engineering,2020,63:148-158.

[69]王志. 9Cr18MoV阀套珩磨毛刺形成机理及抑制方法研究[D].南京:南京航空航天大学,2022.

[70] WANG P,YANG C Y,YUAN Y Y,et al. Study on the mechanism of burr formation in ultrasonic vibrationassisted honing 9Cr18MoV valve sleeve[J]. Advances in Manufacturing,2025,13:606-619.

[71]方园园,刘伟,姚金鑫,等. 16Cr3NiWMoVNbE航空齿轮弹振珩磨光整表面完整性试验研究[J].航空制造技术,2023,66(16):124-130.

[72] REIZER R,PAWLUS P,WIECZOROWSKI M. Simulation of plateau-honed cylinder liner surface texture creation using superimposition approach[J]. Precision Engineering,2023,82:10-24.

[73]王静.外圆柱功率超声振动珩磨谐振系统设计及有限元分析[D].太原:中北大学,2014.

[74] LI T Y,LU X Q,MA X,et al. Numerical and experimental analysis of the honing texture on the lubrication performance of piston ring-cylinder liner tribosystem[J]. Tribology Transactions,2019,62(6):991-1006.

[75] ZU?IGA G A,FLORINDO B J,BRUNO M O. Gabor wavelets combined with volumetric fractal dimension applied to texture analysis[J]. Pattern Recognition Letters,2014,36:135-143.

[76]汤义虎,贺林,黄立,等.缸套珩磨网纹模拟及流动特性分析[J].表面技术,2023,52(8):173-181.

[77]罗亮,郎霄,祖国庆,等.一种基于改进YOLOv8n的气缸套缺陷检测方法[J].中国机械工程,2025,36(5):1054-1064.

[78] DAI J C,ZENG W H,LU W L,et al. Quality evaluation of honing surface groove features based on improved level-set analyses[J]. Measurement,2022,190:110789.

[80]许乃山,王北军,杨晓帆,等.基于声发射的缸套珩磨网纹磨损深度检测[J].车用发动机,2024(4):79-84.

基本信息:

DOI:

中图分类号:TG663;TG580.67

引用信息:

[1]李祚庥,祝锡晶,郭千瑜,等.超声珩磨光整加工技术研究综述[J].电加工与模具,2025,No.390(04):1-12.

基金信息:

国家自然科学基金项目(51275490)

检 索 高级检索